

Contribution ID: 99 Type: Oral

Nuclear Structure of 36 Al and 36 Si via β -decays of 36 Mg and 36 Al

Tuesday, 14 June 2022 12:10 (20 minutes)

The β -decays of 36 Mg and 36 Al have been studied at The National Superconducting Cyclotron Laboratory (NSCL) in order to extract the half-lives of the parent nuclei and reveal the nuclear structure of the decaying descendants. Neutron-rich 36 Mg and 36 Al were produced at the NSCL's Coupled Cyclotron Facility via projectile fragmentation of a 48 Ca beam of energy 140 MeV/u impinged on a 642 mg/cm² thick 9 Be target. The fragmented beam was delivered to the decay station after being resolved by the A1900 separator. Two Si p-i-n detectors were used for the particle identification whereas the ions were implanted on a 3-mm thick CeBr₃ scintilator coupled to a position-sensitive photo multiplier tube (PSPMT). The β -delayed γ -rays were identified with 16 segmented Ge detector array (SeGA) and 15 LaBr₃ detectors. The half-lives of the two parent nuclei were determined and were compared to the previous measurements. β -delayed γ -ray transitions were observed in 36 Al and 36 Si for the first time and their level schemes were built from the correlated β decays of 36 Mg and 36 Al. Excited energy states of 36 Al populated by the β -decay of 36 Mg are proposed, whereas only the ground state information was available prior to this work. The experimental results were interpreted by using the nuclear configuration interaction studies with the FSU shell-model Hamiltonian. The results will shed light on our understanding of the structure of more exotic neutron-rich nuclei to be produced with the FRIB.

Primary author: LUBNA, Rebeka Sultana (Facility of Rare Isotope Beams, Michigan State University)

Co-authors: Dr CHESTER, Aaron (Facility of Rare Isotope Beams, Michigan State University); Prof. LIDDICK, Sean (Facility of Rare Isotope Beams, Michigan State University); Prof. CRIDER, Benjamin (Mississippi State University); OGUNBEKU, Timilehin (Mississippi State University); CHILDERS, Katherine (Texas A&M University); CHOWDHURY, Partha (The University of Massachusetts Lowell); LEWIS, Rebecca (National Superconducting Cyclotron Laboratory, Michigan State University); LYONS, Stephanie (National Superconducting Cyclotron Laboratory, Michigan State University.); NEUPANE, Shree (University of Tennessee Knoxville); PÉREZ-LOUREIRO, David (University of Tennessee Knoxville); PROKOP, Christopher (Los Alamos National Laboratory); SILWAL, Umesh (Mississippi State University); SIWAKOTI, Durga (Mississippi State University); SMITH, Dylan (mississippi state university); SMITH, Mallory (National Superconducting Cyclotron Laboratory, Michigan State University); RICHARD, Andrea (National Superconducting Cyclotron Laboratory, Michigan State University)

Presenter: LUBNA, Rebeka Sultana (Facility of Rare Isotope Beams, Michigan State University)

Session Classification: NS2022 Plenary

Track Classification: Oral Presentations