Beta-decay strength of ⁷⁸Ni to neutron-unbound states revealed by ⁷⁹Cu

Maninder Singh

Nuclear Structure 2022-Berkeley

Doubly-Magic 78Ni

⁷⁸Ni Beta Decay

⁷⁹Cu (⁷⁸Ni + 1p) Beta Decay

Experiment at Radioactive Ion Beam Factory

Neutron (N)

- PID showing group of implanted ions: Fe, Co, Ni, Cu, Co, Zn, Ga, Ge, As, and Se
- Only ^{83,84}Ga and ⁸¹Zn have energy spectra of delayed neutrons previously measured

Proton

 Σ

Neutron Spectroscopy using VANDLE

- Pixie-16 with custom triggering scheme
- 48 VANDLE Bars
- 2 high-purity germanium clovers
- 10 3" x 3" and 2 2" x 2" LaBr₃

⁷⁹Cu (N=50) Decay

Neutron Energy (MeV)

Neutron Intensity and Beta-strength

Neutrons in coincidence with gammas used to adjust the branching ratios and strength distribution

⁷⁹Cu Beta-decay Strength

The experimental data agree with the *fpgpn* prediction with 5 MeV proton shell gap

Beta decay beyond N=50

Allowed Gamow-Teller transitions transform neutron states below the N=50 shell gap to proton spin-orbit partners above the Z=28 gap

⁸⁰Cu (N=51) Decay

⁸¹Cu (N=52) Decay

- Branching ratios: 482-keV, 9.4(3.8)% and 1492-keV, 26.7(4.8)%
- Presence of 1492- and 482-keV transitions \rightarrow strong population of 2⁺ and 4⁺ excited state in N=50 ⁸⁰Zn by neutrons

⁸¹Cu (N=52) Decay

Beta-decay strength shifted to higher excitation energy when crossing N=50 shell gap

Concluding Remarks

- Beta-delayed neutron emission is the dominant decay mode for investigated nuclei ⁷⁹⁻⁸¹Cu
- Neutron energy measurement needed to establish the beta-strength distribution
- Experiment performed using VANDLE and YSO implant detector in ⁷⁸Ni region ($26 \le Z \le 34$)
- Neutron-emitting states identified in the $\beta\text{-decay}$ of $^{79\text{-}81}\text{Cu}$
- Shell model predictions of B(GT) agree with the data for ⁷⁹Cu using *fpgpn* interaction
- Population 2⁺ and 4⁺ in ⁸⁰Zn by neutrons observed in the decay of ⁸¹Cu
- Hauser-Feshbach statistical model predicts the sharing of neutron energy with gamma rays in the decay of ⁸¹Cu
- Decay-strength distributions shifted to higher excitation energy when crossing N=50 shell gap!

Collaborators

M. Singh¹, R. Yokoyama², R. K. Grzywacz^{1,2},
T. King², S. Nishimura³, P. Brionnet³, I. Cox¹,
A. Fijalkowska⁴, L M. Fraile⁵, S. Go⁶, A.
Gottardo⁷, M. Karny⁴, A. Keeler¹, A. Korgul⁴,
M. Madurga¹, K. Miernik⁴, S. Neupane¹, M.
Niikura⁸, M. Pfutzner⁴, M. Piersa⁴, M.
Rajabali⁹, B.C. Rasco², K.P.Rykaczewski², M.
Silkowski⁴, M. Stepaniuk⁴, J.L. Tain¹⁰, A.
Delgado¹⁰, Z. Xu¹, and M.W. Wolinska-

[1] Dept. of Physics and Astronomy, University of Tennessee
[2] Oak Ridge National Laboratory
[3] RIKEN Nishina Center
[4] University of Warsaw
[5] Complutense University of Madrid
[6] Kyushu University
[7] INFN-LNL
[8] University of Tokyo
[9] Tennessee Tech University
[10] Instituto de Fí sica Corpuscular

Thank You!!

This research was sponsored in part by the Office of Nuclear Physics, U.S. Department of Energy under Award No. DE-FG02-96ER40983 (UTK) and DE-AC05-000R22725 (ORNL), and by the National Nuclear Security Administration under the Stewardship Science Academic Alliances program through DOE Award No. DE-NA000213

Neutron Scattering Effects

¹⁹ Analysis

Ion-Beta Correlation using YSO

$$\sqrt{(I_{\beta,i} - I_{ion,k})^2 + (I_{\beta,j} - I_{ion,l})^2} \le n$$

²⁰ Analysis

M. Singh et al. (to be submitted) & R. Yokoyama et al., 2019

YSO Implant Detector

5mm

12mm

Properties

Cannot use conventional SiDSSD for nToF

- $Y_2 SiO_5$ (Ce)
- High stopping power ($Z_{eff} = 35 \& \rho = 4.5 \text{ g/cm}^3$)
- High beta-detection efficiency
- Decay time of 50-70 ns
- Provides sub-nanosecond timing resolution

Functions

• Correlate implanted ions and their beta decays

Incident Particle

• Fast timing for time-of-flight-based neutron energy measurements

PSPMT (8 x 8)

• Light quenching essential for mapping dynamic range of ions (~GeV) and electrons (~1-10 MeV) simultaneously

2-mm pitch

Critical development for the

experiment

Segmented

YSO crystal (75mm x 75mm)

Bottom (50 mm x 50 mm),Top (75 mm x 75 mm)

Readout resistive network