

Contribution ID: 111 Type: Oral

First β-decay spectroscopy of 135In and new β-decay branches of 134In

Thursday, 16 June 2022 16:30 (20 minutes)

The β decay of the neutron-rich 134 In and 135 In was investigated experimentally with the aim of providing new insights into the nuclear structure of the tin isotopes above N=82. Better understanding of exotic nuclides from the 132 Sn region is required for accurate modeling of the rapid neutron capture nucleosynthesis process (r process), due to the $A\approx 130$ peak in the r-process abundance pattern being linked to the N=82 shell closure [1, 2]. Because a vast number of nuclei involved in the r process are β -delayed neutron (βn) emitters, new experimental data that can verify and guide theoretical models describing βn emission are of particular interest. Neutron-rich isotopes 134 In and 135 In –being rare instances of experimentally accessible nuclides for which the $\beta 3n$ decay is energetically allowed [3] –constitute representative nuclei to investigate the competition between βn and multiple-neutron emission as well as the γ -ray contribution to the decay of neutron-unbound states.

The β -delayed γ -ray spectroscopy measurement was performed at the ISOLDE Decay Station. Three β -decay branches of 134 In were established, two of which were observed for the first time [4]. Population of neutron-unbound states decaying via γ rays was identified in the two daughter nuclei of 134 In, 134 Sn and 133 Sn, at excitation energies exceeding the neutron separation energy by 1 MeV. The βn - and $\beta 2n$ -emission branching ratios of 134 In were determined and compared with theoretical calculations. The βn decay was observed to be dominant β -decay branch of 134 In even though the Gamow-Teller resonance is located substantially above the two-neutron separation energy of 134 Sn. Transitions following the β decay of 135 In are reported for the first time, including γ rays tentatively attributed to 135 Sn [4]. A transition that might be a candidate for deexciting the missing neutron single-particle $\nu 1i_{13/2}$ state in 133 Sn was observed in both β decays and its assignment is discussed. Experimental level schemes of 134 Sn and 135 Sn are compared with shell-model predictions, including calculations considering particle-hole excitations across the N=82 shell gap [5].

- [1] B. Pfeiffer, K. L. Kratz, F. K. Thielemann, and W. B. Walters, Nucl. Phys. A 693, 282 (2001).
- [2] M.R. Mumpower, R. Surman, G.C. McLaughlin, and A. Aprahamian, Prog. Part. Nucl. Phys. 86, 86 (2016).
- [3] M. Wang, W. J. Huang, F. G. Kondev, G. Audi, and S. Naimi, Chin. Phys. C 45, 030003 (2021).
- [4] M. Piersa-Siłkowska et al. (IDS Collaboration), Phys. Rev. C 104, 044328 (2021).
- [5] H. Jin, M. Hasegawa, S. Tazaki, K. Kaneko, and Y. Sun, Phys. Rev. C 84, 044324 (2011).

Primary authors: PIERSA-SILKOWSKA, Monika (CERN); KORGUL, A. (University of Warsaw); BENITO, J. (Universidad Complutense de Madrid); FRAILE, L. M. (Universidad Complutense de Madrid); ON BEHALF OF THE IS610 COLLABORATION

Presenter: PIERSA-SILKOWSKA, Monika (CERN)

Session Classification: NS2022 Plenary

Track Classification: Oral Presentations