

One University. One World. Yours.

Proton inelastic scattering reveals deformation in ⁸He

Matthias Holl

Saint Mary's University/TRIUMF

Current:

European Spallation Source/Chalmers University of Technology

Outline

- Introduction: Properties of ⁸He and previous measurements
- The IRIS setup at ISAC-II at TRIUMF
- Experimental results
- Comparison to theory
- Summary

Introduction: ⁸He

- Most neutron-rich bound nucleus
 - N/Z=3
- Structure ⁴He + 4n
- Larger S_{2n}/smaller charge radius than ⁶He
 - Indication of closed sub-shell?
- Precise knowledge of low-lying states required!

Previous Measurements

	Lab	Reaction Type	E [AMeV]
а	RIKEN	(p,p')	72
b	GSI	Coul. Ex.	227
С	GSI	Fragmentation	227
d	JINR	¹⁰ Be(¹⁵ N, ¹⁷ F) ⁸ He	16
е	JINR	⁶ He(t,p) ⁸ He	25
f	RIKEN	Breakup	82
June 13, 2022			

a: Korsheninnikov et al., Phys- Lett. B 316 (1993) 38 b: Markenroth et al. Nucl. Phys. A679 (2001) 462 c: Meister et al. Nucl. Phys. A 700 (2002) 3 d: Bohlen et al., Prog. Part. Nucl. Phys. 42 (1999) 17 e: Fornichev et al., Eur. Phys. J. A 42 465 (2009) Golovkov et al., Phys. Lett. B 672 (2009) 22 f: Xiao et al., Chin. Phys. Lett. 29 8 (2012) 082501 4

- ⁸He produced from SiC target
- Accelerated to 8.25A MeV
- Delivered to IRIS@ISAC-II
- $\sim 10^4$ particles per second
- ~90 % purity

The IRIS Setup @ ISAC-II

- Allows studies of direct reactions with low intensity beams
- Particle identification using 2 Δ E-E telescopes
 - Light particles: 100 μ m Si detector + 1.2 cm CsI(TI) array
 - covering 21°-46°
 - "Heavy" particles: 60 μ m + 1 mm Si detectors

June 13,•2022 covering ~3°-10°

Low Pressure Ionization Chamber

- Used to identify beam contaminants with minimal energy loss
- 19.5 Torr isobutane

Solid Hydrogen Target

- 100 µm solid H₂ target
- Formation: H_2 gas sprayed onto a 4.5 μ m silver foil at T<4 K
- Energy difference of nuclei scattered elastically off the silver foil with and without H₂ used to continuously measure thickness

June 13, 2022

Particle ID

• Light and heavy reaction products identified using ΔE -E telescopes

Excitation Energy Spectrum

- Background from silver foil subtracted
- Elastic scattering analyzed by gating on ground state
- Inelastic scattering:
 - Excitation spectrum above neutron threshold dominated by non-resonant reactions
 - Data fit by simulated detector response of resonance(s) + non-resonant background

Low-lying resonance in ⁸He

- Possible decays of resonance:
 - Direct: ${}^{8}\text{He}(2^{+}) \rightarrow {}^{6}\text{He}(0^{+})+2n$
 - $S_{2n} = 2.1 \text{ MeV}, L_2^{rel} = 0.2$
 - Sequential: ${}^{8}\text{He}(2^{+}) \rightarrow {}^{7}\text{He}+n \rightarrow {}^{6}\text{He}+n+n$:

•
$$S_n = 2.5 \text{ MeV}, L_1^{rel} = 1$$

- Impossible to distinguish between pure direct and mixed decay
- Including additional resonances does not improve the description of the data
 - No sign of dipole excitation
- Resonance: $E^* = 3.54(6)$ MeV, $\Gamma = 0.89(11)$ MeV
 - In agreement with previous measurements from (p,p') and transfer

Differential Cross Sections

- p+⁸He optical potential determined using SFRESCO
- Elastic and inelastic scattering analyzed simultaneously
- Using DWBA (Set 1) and coupledchannel (Set 2)
- State at $E^* = 3.5 \text{ MeV}$ explained by L = 2
- All sets require large deformation lengths $\delta_2^{ex} = 1.24 1.40$ fm
- $\rightarrow \beta_2 = 0.40(3)$, ⁸He has a deformed sub-shell gap

Comparison to *ab initio* calculations

- Two many-body approaches:
 - coupled-cluster theory (CC)
 - no-core shell model + continuum (NCSMC)
 - Several chiral interactions
- Resonance energy well reproduced by both approaches
- NCSMC:
 - good agreement for width ($\Gamma = 0.75 \text{ MeV}$)
 - Quadrupole moment suggests sizable neutron deformation
 - No evidence of 1⁻-state below 6 MeV

CRC Calculations

- Coupled-channel (CC) and coupled-reaction-channels (CRC) calculations
 - Using NCSM inputs
- Good agreement with data for elastic and inelastic scattering, as well as ⁸He(p,d)
 - Elastic scattering requires inclusion of resonance in compound ⁸Li
- $\delta_2 = 1.39 \text{ fm}$

Summary

- Measurement of proton inelastic scattering of ⁸He at 8.25A MeV
- Confirmed first excited state of ⁸He as unbound 2⁺ state
 - $E^* = 3.54(6)$ MeV, $\Gamma = 0.89(11)$ MeV
- Excitation energies from *ab initio* calculations in a coupled cluster framework and NCSMC in good agreement with the data
 - \varGamma From NCSMC also consistent with data
- DWBA/CC analysis of angular distribution yields a quadrupole deformation parameter $\beta_2 = 0.40(3)$ ($\delta_2^{ex} = 1.32(8)$ fm)
 - Consistent with quadrupole moment from NCSMC calculations
 - Microscopic CRC calculations with NCSM densities explain the inelastic scattering and yield $\delta_2{=}\,1.39~{\rm fm}$

One University. One World. Yours.

M. Holl^{a,b}, R. Kanungo^{a,b,*}, Z.H. Sun^{c,d}, G. Hagen^{c,d}, J.A. Lay^{e,f}, A.M. Moro^{e,f}, P. Navrátil^b, T. Papenbrock^{c,d}, M. Alcorta^b, D. Connolly^b, B. Davids^b, A. Diaz Varela^g, M. Gennari^b, G. Hackman^b, J. Henderson^b, S. Ishimoto^h, A.I. Kilic^g, R. Krücken^b, A. Lennarz^{b,i}, J. Liangⁱ, J. Measures^j, W. Mittig^{k,1}, O. Paetkau^b, A. Psaltisⁱ, S. Quaglioni^m, J.S. Randhawa^a, J. Smallcombe^b, I.J. Thompson^m, M. Vorabbi^{b,n}, M. Williams^{b,o}

^a Astronomy and Physics Department, Saint Mary's University, Halifax, Nova Scotia, B3H 3C3, Canada

^b TRIUMF, Vancouver, BC, V6T 2A3, Canada

^c Physics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA

^d Department of Physics and Astronomy, University of Tennessee, Knoxville, TN 37996, USA

^e Departamento de Física Atómica, Molecular y Nuclear, Universidad de Sevilla, Apartado 1065, E-41080 Sevilla, Spain

^f Instituto Interuniversitario Carlos I de Física Teórica y Computacional (iC1), Apdo. 1065, E-41080 Sevilla, Spain

- ^g Department of Physics, University of Guelph, Guelph, ON, N1G 2W1, Canada
- ^h High Energy Accelerator Research Organization (KEK), Ibaraki 305-0801, Japan

ⁱ McMaster University, Hamilton, ON, L8S 481, Canada

- ^j Department of Physics, University of Surrey, Guildford, Surrey, GU2 7XH, United Kingdom
- ^k National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824-1321, USA
- ¹ Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824-1321, USA
- ^m Lawrence Livermore National Laboratory, P.O. Box 808, L-414, Livermore, CA 94551, USA
- ⁿ National Nuclear Data Center, Bldg. 817, Brookhaven National Laboratory, Upton, NY 11973-5000, USA
- ^o Department of Physics, University of York, York YO10 5DD, United Kingdom

Thank you for your attention!

Fit with two resonances

Kinematics

 Excitation energy spectra reconstructed from light particle energies and angles