Contribution ID: 79 Type: Oral

Search for Neutrino-less Double Beta Decay with CANDLES

Thursday, 12 September 2013 16:00 (20 minutes)

CANDLES is the project to search for neutrino-less double beta decay $(0\nu\beta\beta)$ of 48 Ca. $0\nu\beta\beta$ is acquiring great interest after the confirmation of neutrino oscillation which demonstrated nonzero neutrino mass. Measurement of $0\nu\beta\beta$ provides a test for the Majorana nature of neutrinos and gives an absolute scale of the effective neutrino mass.

In order to search for $0\nu\beta\beta$ of 48 Ca, we proposed CANDLES system by using CaF $_2$ scintillators. The CANDLES system aims at a high sensitive measurement by a characteristic detector structure and 48 Ca enrichment. The detector structure realizes a complete 4π active shield by immersion of the CaF $_2$ scintillators in liquid scintillator. The active shield by the liquid scintillator leads to a low background condition for the measurement. On the other band,

⁴⁸Ca enrichment is also effective for the high sensitive measurement, because natural abundance of ⁴⁸Ca is very low (0.19\%). This means that an improvement of sensitivity by enrichment is a maximum of 20 times for the neutrino mass. However ⁴⁸Ca enrichment is generally difficult and expensive. Therefore we started the study of ⁴⁸Ca enrichment and succeeded in obtaining enriched ⁴⁸Ca although it is a small amount.

We have developed the CANDLES III system, which contained 350 g of $^{48}\mathrm{Ca}$ without enrichment, at the Kamioka underground laboratory. In 2012 we installed a light-concentration system in the CANDLES III system in order to improve a energy resolution. A photo-coverage was about twice larger than the one without the light-concentration system. And we started a $0\nu\beta\beta$ measurement and have data of a measurement time for 3 months.

Here we will report the detector performance for background rejection, the result of the measurement and the expected sensitivity with the light-concentration system.

Primary author: Dr UMEHARA, Saori (Osaka University)

Co-authors: Prof. YOSHIDA, Sei (Osaka University); Prof. KISHIMOTO, Tadafumi (Osaka University); Prof.

NOMACHI, masaharu (Osaka University)

Presenter: Dr UMEHARA, Saori (Osaka University)

Session Classification: Double Beta Decay/ Neutrino Mass V

Track Classification: Double Beta Decay