Dr
Karen Gibson
(Case Western Reserve University)
10/09/2013, 14:00
Dark Matter
Oral
I will present the status and prospects of the LUX experiment, which employs 350 kg of two-phase xenon to search for WIMP dark matter interactions. The LUX detector was commissioned at the surface laboratory of the Sanford Underground Research Facility in Lead, SD, during the winter of 2012 and has been running in underground since the winter of 2013. I will review the results of the...
Shigetaki Moriyama
(ICRR,University of Tokyo)
10/09/2013, 14:20
Dark Matter
Oral
"The XMASS experiment aims for direct detection of dark matter
using single-phase liquid xenon. The current phase XMASS-I detector has the largest mass of the target (835kg in total, 100kg in a fiducial volume) and achieves the lowest energy threshold (0.3keV electron equivalent). A next phase detector, XMASS-1.5, with total 5ton (1ton in a fidicual volume) of liquid xenon is planned to start...
Klaus Eitel
(Karlsruhe Institute of Technology (KIT))
10/09/2013, 14:40
Dark Matter
Oral
EDELWEISS is a phased direct Dark Matter search programme with the primary goal to search for WIMPs in the GeV-TeV mass range. For that purpose, a set of cryogenic Ge mono-crystals read out simultaneously by NTD thermal sensors and by surface electrodes is installed in the Modane underground laboratory (LSM, France). The second phase of the experiment was recently completed, setting new limits...
Peter Meyers
(Princeton University)
10/09/2013, 15:00
Dark Matter
Oral
DarkSide-50 is a two phase argon TPC for direct dark matter detection, which is installed at the Gran Sasso underground laboratory, Italy. DarkSide-50 has a 50 kg active volume and will make use of underground argon low in Ar-39. The TPC is installed inside an active neutron veto made with boron-loaded high radiopurity liquid scintillator. The neutron veto is installed inside a 1000 m^3 water...
Dr
Mark Boulay
(Queen's University)
10/09/2013, 15:20
Dark Matter
Oral
The DEAP-3600 experiment will search for dark matter particle interactions on 3.6 tonnes of liquid argon at SNOLAB. The argon is contained in a large ultralow-background acrylic vessel viewed by 255 8-inch photomultiplier tubes. Very good pulse-shape discrimination has been demonstrated for scintillation in argon, and the detector has been designed for a total background budget, including...