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Anatomy of QCD matter
The Physics of dilute and dense regimes of QCD

Color Glass Condensate (CGC)
44— saturation formalism

Strong fields, Wilson lines, non-
linear evolution (BK/JIMWLK)

Review:
Gelis, lancu, Venugopalan (2003)

High-twist
+— formalism

Multiparton correlations, non closed
evolution equations

Qiu, Sterman (1991)
Guo, Wang (2000)

Qiu, Vitev (2003)
Kang, Wang, Wang, Xing (2013)

Collinear
— factorization

Parton distribution functions, linear
evolution (DGLAP)

Collins, Soper (1981)




Nuclear modification ratio
Enhancement (backward region) vs suppression (forward region)

PHENIX (2004)

hadron production in dAu
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Charged particle production pPb
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Nuclear modification ratio
Enhancement (backward region) vs suppression (forward region)
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Kang, Vitev, E. Wang, Xing, Zhang (2014) Ducloue, Lappi, Mdantysaari (2015)
High-twist formalism CGC/saturation
enhancement in backward production due to suppression in forward production due to
nuclear enhancement of incoherent scattering coherence and non-linear evolution
Luo, Qiu, Sterman (1993) Kharzeev, Kovchegov, Tuchin (2003)

Can we unify both formalisms and provide a simultaneous
description of both regimes?



A unified picture of dilute and dense limits

Several efforts in this direction:

Quark jets scattering from a gluon field: From saturation to high p, Gluon TMD in particle production from low to
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of freedom in a proton or nucleus target and derive the full scattering amplitude by including the
interactions between the small and large x gluons of the target. We thus generalize the standard eikonal
approximation for parton scattering, which can now be deflected by a large angle (and therefore have large
p,) and also lose a significant fraction of its longitudinal momentum (unlike the eikonal approximation).
The corresponding production cross section can thus serve as the starting point toward the derivation of a
general evolution equation that would contain the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi evolution
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equation at small x. This amplitude can also be used to construct the quark Feynman propagator, which
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p;) kinematic region where the standard color glass condensate formalism breaks down.
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Probing QCD matter with photons

Direct photon production in collinear factorization

e Consider quark-gluon initiated channel
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Probing QCD matter with photons

Direct photon production beyond twist-2

1

dO'N4—

P~

A+ B

1

leading twist
(twist-2)

(k1)°

<k2> IC 1
p,u pil

\——

Higher twist

(twist-4 and twist-6)

o Higher twist become important at moderate pfl

« What is the intrinsic momentum (k%) of the nucleus ?

AQCD

2
Q57

CGC: Saturation scale
grows with energy and
nuclear number

Q2 x A3



Probing QCD matter with photons

Direct photon production at twist-4
e Consider central cut®
P, —»— —»— P,

Ty Py

(wg — x3)Pa +1, (2 +x3)Pa+1,

Guo, Qiu (1995)
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*Similarly, consider final state, interference,
and asymmetric cuts



Probing QCD matter with photons

Direct photon production at twist-4 & collinear expansion
central cut

e Collinear expansion = [ | expansion

doptA—=Y+X (27)2 e ! 1 o 0 ng (1,22, 73)
- = [ d =21+ (1-€)%] b1

o 1 dependence on the hard factor and also on the distribution through x;’s

Guo, Qiu (1995)
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cuts involve other twist-4 distribution



Probing QCD matter with photons

CGC/saturation framework in a nutshell McLerran, Venugopalan
(1993,1994)

e Color Glass Condensate is an effective theory of sources and fields

Large-x partons = localized and static current J* (drawn from gauge invariant distribution)

Small-x partons = background field AC“; sourced by current (large-x)

e Partons propagate in the small-x background field via Wilson lines

> & > > >
0 (= N Ayala, Jalilian-Marian,
[ = ) e (9AG)" McLerran, Venugopalan
=0 S (1995)

e.g. for quark propagation:
Toyr (1) = 276 (17 )50 /deLe“”“ Vij(yy)
Vislws) = Pep (i [ dr A5, )

e Observables (e.g. cross-section) are convolutions of Wilson lines with perturbative factors

e Wilson lines (correlators) obey non-linear Balitsky (1996) Jalilian-Marian, Leonidov, Weigert (1997)
evolution equations (BK/JIMWLK) Kovchegov (1999)  lancu, Leonidov, McLerran (2001)
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Probing QCD matter with photons
Direct photon production with the CGC/saturation framework

e Amplitudes

P, —— P, —»—

e Differential cross-section CGC Gelis, Jalilian-Marian (2002)

do.p-I—A—>’y-|—X
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e Dipole correlator
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Matching CGC and high twist formalism

Collinear expansion in the CGC

D(za;y, —y')  D(zyy, — yi) lala 0 0 |D(a;y, —v))
2 5 1 Py Lal 6lﬁ D)
(fll — p'u) P~ p{l ?(fli — p'u) 1, =0,
Twist-2 Twist-4
o Twist-2
doPtA=7+X o £? [1 + (1 — 5)2}
- = dz., f(x xrg(x
p’Y dp’;d2p’7L NC pf( p) p'yjl_ g( ) 30

Twist-2 gluon PDF = second moment dipole correlator

:13—)0
2 12 Dipole correlator in
379(37) — 2772043 lhd lL‘ momentum space

Phase ¢F"Y" dropped out (“sub-eikonal”)

1 dy

s — P_X o <PA\TI [F@Jr( )FBJr( )} ‘PA>5J_CMB

zg(z)
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Matching CGC and high twist formalism

Collinear expansion in the CGC
o Twist-4

doPtA—7+X (27T)2aema2 / [1 | (1 g)ﬂ 4
D, —— = = [ dz, f(x Tyt (x
T dpy d2py | N? pf(Tp) ~ § HT'(\)

Twist-4 gluon distribution = fourth moment dipole correlator Missing terms with derivatives of
twist-4 distribution

2N?

Tur(z) = aria? /l‘idQZLF(a;,lL)

1 dy~ _ _ _ _
THT(ZC17$27ZE3) :P_|_ / 2y7T <PA|F§[+(y )FéH_(Z )Fl;s+(z/ )Fa6+(0 )‘PA>5J—0¢55J—I)5
A

x [B(y™ —27)0(=27) +0(:~ —y )O(=2") +O(y” —27)0(z"") +O(z —y )0 ()]

Contains all orderings (central cut)

At small-x all twist-4 distributions collapse into a single distribution - no distinction
between soft and hard gluons!

lim Tci(x,22,23) = lim  Top(x,22,23) = lm T pr (21,22, 73)
x1,r2,x3—0 x1,r2,x3—0 x1,r2,x3—0

Initial state final state Interference
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Matching CGC and high twist formalism

Opening up shock-wave (expand Wilson lines)

I -
>
e

high-twist
Emission between Recovered by keeping
scatterings suppressed —» “sub-eikonal” phase

in the CGC

Gelis, Jalilian-Marian (2002)
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Matching CGC and high twist formalism

Putting back “sub-eikonal "the phase

(2m)5 (0 )y~ /deJ_@_wL'yl /dy’igA:f(yayﬁ(ta)ij

Contour integration puts on-shell intermediate propagators

= f
=~ |

Landau-Pomeranchuk-Migdal effect at play - coherence vs incoherence
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Matching CGC and high twist formalism

In the CGC all gluons are in the covariant gauge

Before collinear expansion all gluons carry different momenta
/ / T AT AT AT
HCOV(LJ_Q LJ_,lJ_,lJ_) @ <A A A A >
After expansion on hard gluon momentum

HLc(lJ_) X <F+QA+A+F+5>5J_Q5
recover result from high-twist formalism
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Summary

e Using direct photon production as an example we establish the
consistency between CGC and high-twist formalism in the collinear limit

1| 2 k2)2
Py | Py 1 Pyt _

H/_/

CGC-high twist formalism
consistency up to twist-4

e ldentify twist-4 gluon distributions in terms of fourth moment of the
dipole of Wilson lines

/dQlLl‘iC(lL) &~ (PA|FFFF|P,)

e Highlight the importance of “sub-eikonal” phases in the collinear limit

6ix,,;P+y_
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Outlook

e Does the consistency between CGC and high-twist formalism
persist at NLO?

e Matching between CGC and twist-4 TMDs

e Establish a framework that allows to resum all twists
(modify Wilson lines to keep track of phases?)

e Phenomenology: describe low-x and large-x data with a single
framework
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Salud for 60 more years of physics

Hope for many collaborations with you!

Happy birthday Xin-Nian!

20



